PRÄEKLAMPSIE
„The Fetal Medicine Foundation, London“

Rainer Bald (rbald@icloud.com)
Preeclampsia: Prevention

Authors: Phyllis August, MD, MPH, Arun Jeyabalan, MD, MSCR
Section Editor: Charles J Lockwood, MD, MHCM
Deputy Editor: Vanessa A Barss, MD, FACOG

UpToDate®, 2018
Einleitung

Der Begriff Präeklampsie bezieht sich auf ein Syndrom, das durch das Auftreten von Hypertonie plus Proteinurie, Endorgan-Dysfunktion oder beides nach 20 Schwangerschaftswochen bei einer zuvor normotensiven Frau gekennzeichnet ist.

Da es keine andere kurative Behandlung als die Geburt gibt, hätte eine Intervention, die Präeklampsie verhindern könnte, einen signifikanten Einfluss auf die Gesundheit von Mutter und Kind weltweit.
Definitionen

Als Präeklampsie (PE) bezeichnet man eine in der zweiten Schwangerschaftshälfte auftretende Erkrankung, die durch Hypertonie und Proteinurie mit eventueller Beteiligung anderer Organe charakterisiert ist.

Hypertonie: systolischer Blutdruck von ≥ 140 mmHg und/oder diastolischer Blutdruck ≥ 90 mmHg in ≥ 2 aufeinanderfolgenden Messungen (je 4 Stunden Abstand) nach der 20. SSW bei einer zuvor normotensiven Schwangeren.

Proteinurie: Nachweis von ≥ 300 mg Protein im 24-Stunden-Sammelurin oder eine Protein-/Kreatinin-Ratio im Harn von ≥ 30 mg/mmol oder der Nachweis von mehr als zwei Kreuz Protein (++) im Urin-Schnelltest.

Propf-Präeklampsie: Präkonzeptionell bestehende oder in der ersten Schwangerschaftshälfte aufgetretene Hypertonie mit Manifestation der Proteinurie oder anderer mütterlicher Organbeteiligung nach der 20. SSW.
Definitionen

Schwere Präeklampsie (mindestens eines der nachfolgenden Kriterien zusätzlich)

- Blutdruck $\geq 160/110$ mm Hg
- Nierenfunktionseinschränkung
- (Kreatinin $\geq 79.6 \mu\text{mol/l} = 0.9 \text{mg/dl}$ oder Oligurie $<500 \text{ ml/d}$)
- Leberbeteiligung (Transaminasenanstieg, persistierende OBS)
- Lungenödem
- hämatologische Störungen (Thrombozytopenie ($<100 \text{ Gpt/l}$), Hämolyse)
- neurologische Symptome (starke Kopfschmerzen, Sehstörungen)
- IUGR (EFW $<5.$ Perzentile und/oder pathologischer Doppler der A. umbilicalis)

Das Ausmaß der Proteinurie ist kein Kriterium mehr für die Definition einer schweren Präeklampsie
Definitionen

- **Pfropf-Präeklampsie**

 chronische Hypertonie und neu aufgetretene / sich verschlechternde Proteinurie >20. SSW

 oder

 laborchemische Marker der Präeklampsie

CAVE:

in 17-25 % entwickelt sich eine Pfropf-PE aus einer chronischen Hypertonie (50 % davon <34. SSW)
Definitionen

Eklampsie / HELLP-Syndrom

Eklampsie
• im Rahmen einer Präeklampsie auftretende klonisch-tonische Krämpfe

CAVE: nur in ca. 50 % mit schwerer Hypertonie assoziiert selbst bei fehlender Hypertonie oder Proteinurie möglich (14-34 %)

HELP-Syndrom
• Hämolysis, Elevated Liver enzymes, Low Platelet count

CAVE: in 5-15 % keine signifikante Proteinurie und in bis zu 20 % keine Hypertonie
Mütterliche Organbeteiligung

liegt vor, wenn zusätzlich mindestens eines der folgenden Kriterien erfüllt wird:

Niereninsuffizienz: Serumkreatinin $\geq 90 \ \mu\text{mol/l}$

Leberfunktionseinschränkung: Transaminasenanstieg (≥ 2-faches des oberen Grenzwertes) und/oder analgetika-resistente Oberbauchschmerzen

neurologische Symptome: Eklampsie, Schlaganfall, Verwirrtheit, Hyperreflexie begleitet von Clonus, starke Kopfschmerzen mit Hyperreflexie, Blindheit oder persistierende visuelle Skotome

hämatologische Störungen: Thrombozytopenie $<150.000/\text{dl}$, disseminierte intravasale Gerinnung (DIC) oder Hämolyse
Hintergrund der Präeklampsie

Prävalenz

PE tritt in 2-5 % aller Schwangerschaften abhängig von soziodemographischen Faktoren der untersuchten Population auf.

Bei schwarzafrikanischen Frauen etwa ist die Rate zwei bis drei mal höher als bei Kaukasierinnen.

Ein Drittel der betroffenen Frauen muss aufgrund der Erkrankung vor der vollendeten 37. SSW entbunden werden (sogenannte frühe PE).

Wird die Entbindung nach der vollendeten 37. SSW erforderlich, wird dies als späte PE bezeichnet.
Klinische Auswirkungen

Die PE ist einer der Hauptgründe für maternale und perinatale Morbidität und Mortalität.

Weltweit sind jährlich 50.000 mütterliche Todesfälle auf PE zurückzuführen. Die Präeklampsie ist mit einer reduzierten plazentaren Durchblutung vergesellschaftet. Dadurch steigt das Risiko für eine Totgeburt.

Bei einem beträchtlichen Anteil der erkrankten Frauen wird eine vorzeitige Entbindung aus mütterlicher und/oder fetaler Indikation erforderlich.

PE und Eklampsie sind die Ursache für 25 % aller Totgeburten und Todesfälle in der Neonatalperiode, sowie für 15 % der Wachstumsretardierungen.
Pathogenese der Präeklampsie

Die vaskuläre Hauptversorgung des Uterus wird durch die rechte und linke A. uterina gewährleistet.

Während der Schwangerschaft nistet sich die Blastozyste in das mütterliche Endometrium ein.

Die äußere Schicht der Blastozyste entwickelt sich in den Trophoblast, der sich weiter in den villösen und extravillösen Trophoblast differenziert.

Aus dem villösen Trophoblast entwickeln sich die Chorionzotten, die Nährstoffe und Sauerstoff zwischen Fetus, Mutter und extravillösem Trophoblasten transportieren.
Die extravillösen Trophoblasten wandern in die Spiralarterien ein und wandeln diese um.

Im Wesentlichen ersetzen die Trophoblasten die endotheliale Schicht der Spiralarterien und zerstören das elastische Gewebe in den Gefäßwänden, sodass diese schmalen Muskelgefäße in große nicht-muskuläre Gefäße umgewandelt werden.

Dies führt zu einer Steigerung des maternalen Blutflusses zur Plazenta.

Dieser physiologische Prozess läuft in zwei Stadien ab:

Die erste Trophoblastinvasion betrifft die Spiralarterien in der Decidua (Endometrium in der Schwangerschaft) und findet in der 8. SSW statt.

Die zweite Invasion der Spiralarterien im inneren Drittel des Myometriumss erfolgt zwischen der 14. und 18. SSW.
Bei der PE, insbesondere der frühen PE, ist der physiologische Prozess der Plazentation beeinträchtigt. Es findet eine Invasion der Trophoblasten in nur 50-70 % der Spiralarterien statt.

Dieser Vorgang reicht nicht bis zu den myometrialen Segmenten, sondern bleibt auf die Gefäße der Decidua beschränkt.

Dadurch kommt es zu einer geringeren Zunahme des Gefäßlumens der Spiralarterien und somit zu einer reduzierten plazentaren Blutversorgung.

Der Grund für die insuffiziente Plazentation ist unbekannt, es spielen jedoch vermutlich genetische und immunologische Faktoren eine Rolle.
Pathogenese

Das anti-angiogenetische Protein sFLT1 ist einer der plazentaren Faktoren der im Rahmen der Stressreaktion freigesetzt wird.

Dieses Protein ist bei der PE erhöht.

Im Gegensatz dazu ist die Konzentration des angiogenic placental growth factor (PIGF) im Rahmen der PE reduziert.

Dieses angiogenetische Ungleichgewicht führt zu einer vaskulären Entzündung im mütterlichen Kreislauf und einer generalisierten endothelialen Dysfunktion.
Prävention der Präeklampsie

Bettruhe und Ernährungsumstellung

Die PE-Rate wird weder durch Bettruhe noch durch Einschränkung körperlicher Aktivität oder Ernährungsumstellung, wie z. B. Reduktion der Salz-Zufuhr oder Einnahme von Nahrungsergänzungsmitteln wie Magnesium, Vitamin C, D, E oder Fischöl gesenkt.

Eine kalziumreiche Ernährung bei Kalziummangel könnte einen positiven Effekt auf die PE-Rate haben.

Vorläufige Daten lassen darauf schließen, dass die prophylaktische Einnahme von **Pravastatin** (*Gruppe der Statine*) einen positiven Einfluss auf das Hochrisikokollektiv hat.
Prävention der Präeklampsie

Niedrig dosiertes Aspirin

Calcium supplementation compared with placebo for preventing hypertensive disorders and related problems in pregnancy

Patient or population: pregnant women
Settings: outpatient
Intervention: high-dose calcium (≥ 1 g/day)
Comparison: placebo

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Illustrative comparative risks* (95% CI)</th>
<th>Relative effect (95% CI)</th>
<th>No of participants (studies)</th>
<th>Quality of the evidence (GRADE)</th>
<th>Comments</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Assumed risk</td>
<td>Corresponding risk</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No calcium</td>
<td>Calcium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pre-eclampsia</td>
<td>Overall</td>
<td>RR 0.45 (0.31 to 0.65)</td>
<td>15,730 (13)</td>
<td>++</td>
<td>P < 0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>65 per 1000</td>
<td>RR 0.36 (0.20 to 0.65)</td>
<td>10,678 (8)</td>
<td>high</td>
<td>P = 0.0007</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29 per 1000</td>
<td>RR 0.22 (0.12 to 0.42)</td>
<td>587 (5)</td>
<td>high</td>
<td>P < 0.0001</td>
<td></td>
</tr>
<tr>
<td>Low calcium diet</td>
<td>57 per 1000</td>
<td>21 per 1000 (11 to 37)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-risk women</td>
<td>176 per 1000</td>
<td>38 per 1000 (21 to 74)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preterm birth</td>
<td>Overall</td>
<td>RR 0.76 (0.60 to 0.97)</td>
<td>15,275 (11)</td>
<td>high</td>
<td>P = 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>104 per 1000</td>
<td>79 per 1000 (62 to 101)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELLP Syndrome</td>
<td>1 per 1000</td>
<td>3 per 1000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Illustrative comparative risks are calculated assuming a risk of 5%.

GRADE: Grades of Recommendation, Assessment, Development, and Evaluation.
Antiplatelet agents for prevention of pre-eclampsia: a meta-analysis of individual patient data

Lisa M Askie, Lelia Duley, David J Henderson-Smart, Lesley A Stewart, on behalf of the PARIS Collaborative Group*

Interpretation Antiplatelet agents during pregnancy are associated with moderate but consistent reductions in the relative risk of pre-eclampsia, of birth before 34 weeks’ gestation, and of having a pregnancy with a serious adverse outcome.

Prevention of perinatal death and adverse perinatal outcome using low-dose aspirin: a meta-analysis

S. ROBERGE*, K. H. NICOLAIDES†, S. DEMERS‡, P. VILLA§ and E. BUJOLD*

*Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada; †Harris Birthright Research Centre of Fetal Medicine, King’s College Hospital, London, UK; ‡Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Quebec City, QC, Canada; §Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland

Conclusion Low-dose aspirin initiated at ≤ 16 weeks of gestation is associated with a greater reduction of perinatal death and other adverse perinatal outcomes than when initiated at >16 weeks.
EFFECT OF ASPIRIN ON INCIDENCE OF PRE-ECLAMPSIA

SIR,-Goodlin et al. have described a patient with recurrent pre-eclampsia and thrombocytopenia who seemed to benefit from aspirin. The efficacy of aspirin on the progress of pregnancy-associated hypertension has received little attention.

1534 v. Chr. verwendeten die Ägypter Pflanzenextrakt der Weide zur Schmerzlinderung.

400 v. Chr. stellte Hippokrates Pulver aus der Rinde und den Blättern der Weide zur Linderung von Kopfschmerzen, Schmerzen und Fieber her.

Im Jahre 1828 extrahierte Johann Buchner an der Universität München den aktiven Wirkstoff der Weide und nannte ihn Salacin (Salix - lateinisch für Weide).

Im Jahre 1915 entwickelte Bayer die Aspirin Tablette.

Im Jahre 1979 berichteten Crandon und Isherwood, dass die regelmäßige Aspirin-Einnahme in der Schwangerschaft zu einem geringeren Risiko einer PE führt.
Sekundäre Analyse der Daten der ASPRE Studie zeigen: Der positive Effekt von Aspirin hängt von der Compliance der Patientinnen ab: die Reduktion der frühen PE bei einer Compliance ≥90 % kann bei 75 % liegen, bei einer geringeren Compliance beträgt diese jedoch nur 40 %. Bei chronischer Hypertonie zeigt Aspirin keinen präventiven Effekt der frühen PE. Folglich wäre eine potentielle Reduktion der frühen PE von 95 % möglich gewesen, wenn jene Patientinnen mit chronischer Hypertonie von der Studie ausgeschlossen worden wären und die Compliance bei ≥90 % gelegen hätte.
Prävention

LOW-DOSE ASPIRIN

Niedrig dosiertes Aspirin reduziert die Häufigkeit einer Präeklampsie um etwa 10 bis 20 % bei Frauen mit mittlerem bis hohem Risiko.

Wirkmechanismus

Präeklampsie geht mit einem erhöhten Thrombozytenumsatz und erhöhten Thrombozyten-Thromboxanspiegeln einher.

Im Gegensatz zu einer Aspirintherapie mit höherer Dosis verringert niedrig dosiertes Aspirin (60 bis 150 mg / Tag) die thrombozytäre Thromboxansynthese, während die Prostacyclinsynthese der vaskulären Wand aufrechterhalten wird.

Die günstige Wirkung von niedrig dosiertem Aspirin kann auch mit einer Modulation einer Entzündungsreaktion zusammenhängen, die bei Frauen mit Präeklampsie nachweisbar ist.
Thromboxan aktiviert die Thrombozytenaggregation über die Thromboxan-Rezeptoren auf den Thrombozyten und ist ein Gegenspieler des vom Endothel gebildeten blutgerinnungshemmenden Prostacyclin.

Thrombozyten enthalten ausschließlich Cyclooxygenase-1 zur Prostaglandinbildung.

Diese wird durch Acetylsalizylsäure unwiederbringlich funktionsunfähig gemacht und kann dann in (den kernlosen) Thrombozyten nicht neu gebildet werden. Daher sind diese Thrombozyten für 8-12 Tage auch nach kleinen Dosen von Acetylsalicylsäure in ihrer Aggregationsfähigkeit deutlich eingeschränkt.

Low-Dose-Aspirin ist das einzige Medikament, für das es überzeugende Beweise für die Verringerung des Risikos von Präeklampsie gibt.

- Bei Frauen mit einem **niedrigen Risiko**: keine **Aspirin-Prophylaxe** (Grad 1B). Schwangerschaftsergebnisse wie Geburtsgewicht, Einschränkung des fetalen Wachstums und die Dauer der Schwangerschaft sind ähnlich wie bei unbehandelten Frauen.

- Bei Frauen mit **hohem Risiko**: niedrig dosierte **Aspirin-Prophylaxe** (Grad 2B). Die Präeklampsie und ihre Folgeerscheinungen (Wachstumsrestriktion, Frühgeburtlichkeit) können zumindest moderat (≥10 %) reduziert werden.
Empfehlungen

- Dosis von Aspirin 100-150 mg täglich bei Frauen mit hohem Risiko
- Beginn der Aspirin Prophylaxe in der 12. oder 13. SSW bzw. idealerweise vor der 16. SSW
- Gabe bis 34+0 SSW
- Wenn die Aspirin-Einnahme nicht am Ende des ersten Trimesters begonnen wird, kann auch die Einnahme nach 16 SSW (aber vor dem Auftreten der Symptome) wirksam sein.
Antikoagulation

Die Anwendung einer prophylaktischen Antikoagulation bei ausgewählten Frauen mit hohem Risiko wurde vorgeschlagen.
Begrenzt verfügbare Daten unterstützen diese Praxis nicht.
Meta-Analyse (2016) von acht randomisierten Studien zu niedermolekularer Heparin (LMWH)-Therapie im Vergleich zu Placebo:

- Die Unterschiede waren **nicht signifikant**.
- Es gab auch **keine signifikanten Unterschiede** im Auftreten von einer Präeklampsie, schweren Präeklampsie, early-onset-Präeklampsie und schweren early-onset-Präeklampsie.

Vitamin C und E-Gabe

Meta-Analysen von neun Studien mit insgesamt fast 20.000 Frauen zeigten **keinen positiven Effekt** und stellten außerdem fest, dass die Gabe mit einem leicht erhöhten Risiko für eine gestationsbedingte Hypertonie verbunden war.

Vitamin D-Gabe

Eine 2016 durchgeführte Meta-Analyse der Vitamin D-Gabe in der Schwangerschaft führte zu einer Reduktion des Präeklampsie-Risikos (8,9 versus 15,5 %; RR 0,52, 95% CI 0,25-1,05), aber diese Ergebnisse basierten nur auf zwei minderwertigen Studien mit insgesamt 219 Frauen.

Folsäure-Gabe

Gepoolte Daten aus acht Kohortenstudien zeigten keine signifikante Reduktion der Präeklampsie.

Gabe von Fischöl

Eine multizentrische randomisierte Studie, die nicht in die Bewertung eingeschlossen wurde, fand keine Reduktion der Präeklampsie.
Es wurden **keine positiven Ergebnisse** gezeigt.

NO (Stickstoffmonoxid)-Donatoren

Ein systematischer Review ergab, dass es **keine qualitativ hochwertigen Beweise dafür gibt**, dass die Gabe von Stickoxiddonoren (Glyceroltrinitrat) eine Präeklampsie verhindert.

Prognose der Präeklampsie

Mütterliche Charakteristik und Anamnese

Frauen, die eine PE in ihrer ersten Schwangerschaft entwickeln, haben ein 10-mal höheres PE-Risiko in der nachfolgenden Schwangerschaft.

Das Risiko einer PE bei einer Erstgebärenden ist dreimal höher als bei einer Mehrgebärenden deren vorangegangenen Schwangerschaften nicht durch Präeklampsie kompliziert wurden.
Anamnestische Risikofaktoren

<table>
<thead>
<tr>
<th>Faktor</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antiphospholipidsyndrom</td>
<td>~9</td>
</tr>
<tr>
<td>Z. n. Präeklampsie</td>
<td>~7</td>
</tr>
<tr>
<td>Body Mass Index > 30</td>
<td>~3-5</td>
</tr>
<tr>
<td>vorbestehender Diabetes mellitus</td>
<td>~3,5</td>
</tr>
<tr>
<td>familiäre Belastung</td>
<td>~3</td>
</tr>
<tr>
<td>vorbestehende Nierenerkrankung</td>
<td>~3</td>
</tr>
<tr>
<td>Erstparität</td>
<td>~2,5-3</td>
</tr>
<tr>
<td>Alter > 40</td>
<td>~2</td>
</tr>
<tr>
<td>chronische Hypertonie</td>
<td>[↑]</td>
</tr>
<tr>
<td>• mit 1 zusätzlichem Risikofaktor</td>
<td>~1,55</td>
</tr>
<tr>
<td>• mit 2 zusätzlichen Risikofaktoren</td>
<td>~3</td>
</tr>
<tr>
<td>• RR diastol. > 110 mm Hg (< 20 Wochen)</td>
<td>~3.2</td>
</tr>
<tr>
<td>Autoimmunerkrankung</td>
<td>~7-9.7</td>
</tr>
<tr>
<td>Ethnizität (afroamerikanisch)</td>
<td>~2</td>
</tr>
<tr>
<td>Schwangerschaftsassozierte Risikofaktoren</td>
<td>RR</td>
</tr>
<tr>
<td>--</td>
<td>----</td>
</tr>
<tr>
<td>bilaterales notching / erhöhter Widerstand Aa. uterinae persistierend > 24. SSW</td>
<td>~ 3,4-6,5</td>
</tr>
<tr>
<td>Mehrlingsschwangerschaft</td>
<td>~ 3</td>
</tr>
<tr>
<td>IVF / Eizellspende</td>
<td>↑</td>
</tr>
<tr>
<td>Gestationsdiabetes</td>
<td>↑</td>
</tr>
<tr>
<td>Hydrops fetalis, Trisomien, Blasenmole</td>
<td>↑</td>
</tr>
</tbody>
</table>
OBSTETRICS

Competing risks model in screening for preeclampsia by maternal characteristics and medical history

David Wright, PhD; Argyro Syngelaki, RM; Ranjit Akolekar, MD;
Leona C. Poon, MD; Kypros H. Nicolaides, MD

Screening im 1. Trimenon

- Biophysical test
- Biochemical test
- Combined test
Prognose der Präeklampsie

Messung des Pulsatilitätsindex der A. uterina (UTPI)

Der UTPI kann transabdominal oder transvaginal gemessen werden.

Im zweiten und dritten Trimester sollte die A. uterina auf Höhe der Überkreuzung mit den Iliacalgefäßen mittels Farbdoppler dargestellt werden.
Prävalenz eines „Bilateralen Notching“

<table>
<thead>
<tr>
<th>Zeitraum</th>
<th>Prävalenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.-14. SSW</td>
<td>46,3 %</td>
</tr>
<tr>
<td>15.-19. SSW</td>
<td>19 %</td>
</tr>
<tr>
<td>20.-24. SSW</td>
<td>14 %</td>
</tr>
<tr>
<td>25.-28. SSW</td>
<td>6,6 %</td>
</tr>
<tr>
<td>29.-32. SSW</td>
<td>5,2 %</td>
</tr>
<tr>
<td>33.-41. SSW</td>
<td>4,6 %</td>
</tr>
</tbody>
</table>
Prognose der Präeklampsie

Nach Auffinden der A. uterina sollte mit dem gepulsten Doppler (PW-Doppler) das Dopplergate mit einer Weite von 2 mm gefäßdeckend positioniert werden. Es ist darauf zu achten, dass der Insonationswinkel weniger als 30° beträgt. Es ist wichtig, dass die systolische Maximalgeschwindigkeit (Vmax) mehr als 60 cm/s beträgt, um sicherzustellen, dass es sich beim untersuchten Gefäß nicht um eine A. arcuata handelt.
Prognose der Präeklampsie

Es sollten drei gleichmäßige aufeinanderfolgende Kurven dargestellt und aus diesen der PI gemessen werden. Anschließend kann der PI-Mittelwert aus linker und rechter Arterie berechnet werden.

\[\text{Pulsatility Index} = \frac{\text{höchste systolische Geschwindigkeit} - \text{minimale diastolische Geschwindigkeit}}{\text{mittlere Blutflussgeschwindigkeit}}\]
Prognose der Präeklampsie

A. uterina pulsatility index (UTPI)

Bei normalen Schwangerschaften ist der UTPI niedrig, was den niedrigen peripheren Gefäßwiderstand widerspiegelt. **Bei Schwangerschaften mit beeinträchtigter Plazentation und bei Hochrisiko-Patientinnen für frühe PE sind die UTPI Werte hoch.**

In der normalen Schwangerschaft nimmt der UTPI mit dem fortschreitenden Gestationsalter und mütterlichem Gewicht ab und ist **bei Frauen mit afro-karibischer Abstammung höher als bei Kaukasierinnen.**
Aussagekraft des Screenings

Kombiniertes Screening durch mütterliche Faktoren, MAP, UTPI, PLGF und sFLT-1 prognostiziert **alle Fälle von früher PE (< 34+0 SSW)**, bei einer screen-positiv Rate von 10 %.

Serum sFLT-1 verbessert die Detektionsrate für die sehr frühe PE, aber nicht für die PE ≥34 SSW.

Das Screening durch mütterliche Faktoren, MAP, UTPI und PLGF prognostiziert 85 % der frühen PE (< 37+0 SSW) und 45 % der späten PE (≥ 37 SSW).
Herzlichen Dank für Ihre Aufmerksamkeit

Sempacher See, Oktober 2017